
I Regular Expressions in Create Lists (Revised 2010)

1. Literal Characters and Metacharacters

Regular expressions are formed from combinations of literal characters and metacharacters.
Literal characters are characters that represent themselves in a matching field. They include
letters, numbers, the space, and most marks of punctuation. _ In Create Lists, the vertical bar (''I"),
which is· used as the subfield delimiter, is a literal character.

Metacharacters are those that perform some function within the regular expression. Some
metacharacters work in combinations that can be termed "metasequences." Any metacharacter
can be turned into a_ literal character by "escaping" it, that is, by preceding it with a backslash.
The metacharacters and metasequences used in Create Lists are shown in the table below.

Regular expressions are invoked using the "matches" condition in Create Lists. Like all searches
in Create Lists, regular expressions in Create Lists are always case insensitive.

Character Classes

. Period (or "dot"). Matches any single character.

[·. · l User-defined character class. Matches any single character that is included in
the class. Examples:

[aie] the letter a, e, or i (upper or lower case)
[a-z] matches any single letter (upper or lower case)
[a-z0-9] · matches any one letter or digit
[av--z] matches any one of the letters a, v, w, x, y, or z .
[I II] matches a single quote or a double quote

t- ' .] matches a hyphen, space, comma or period
(Note in the last example that the hyphen must come first so as not to be interpreted as a range
indicator. Also note that the period character is treated as a literal within a character class.)

["· ..] Negated character class. Matches any single c:;haracterthat is not in the class.
Examples:

["] any character that is not a space
["0....;9a-z] any character that is not a digit or letter

Quantifiers

+ Plus. Matches when the preceding character (or group of characters) occurs
1 or more times. Example:

la0+523 matches "la0523", "la00523", "la000523", etc.

* Asterisk (or "star"). Matches when the preceding character (or group of
characters) occurs 0 or more times. Examples:

la0*523 matches "la523", "la0523", "la00523", etc.

* matches any number of any characters

Playing With "Matches" Richard V. Jackson, Huntington Library
rjackson@huntington.org ·Innovative Users Group Conference 2010 / Chicago

)

{min 1 max}

{num}

(·. · >

$

\

Quantifiers (continued)

Matches when the preceding character (or group of characters) occurs at least
min times, but no more than max times. When one number is given, the
character (or group of characters) must occur exactly num times. The largest
number that may be used in a quantifier is 127. Examples:

fa -z] { 5 , 8 l mat~hes a string of 5 to 8 letters

[0-9]{4}

.{100,125}.{100,125}

matches a string of 4 numbers

matches a string of 200 to 250 characters

(These examples may match fields containing strings longer than the maximum value indicated,
unless literal characters or other more specific subexpr.essions are included both before and after.)

Grouping

Allows a quantifier to apply to a group of characters. Example:

Melvil (le) { o, 1} Dewey matches "Melville Dewey" or "Melvil Dewey"
(the string "le" occurs 0 or 1 times)

Position Indicators

Beginning of the field position. Anchors what follows to the start of the field.
(" must be the first character in the expression.) More information on p. 3.

End of field position. Anchors what precedes itto the end of the field. ($ must
be the last character in the expression.) •Examples:

[" •] $ matches when the last character in the field
is not a period. (Note that the""" within the
brackets indicates a negated character class,
not the beginning of the field.)

"245 .. la. {0,5}$ matches a 245 tag with 5 or fewer characters
between la and the end of the field

Backslash ("Escape")

Causes the character that follows to be interpreted as a literal character.
Examples:

\.\.\.$

\{[0-.:9]{3}\}

\$5[0.:..9][0-9]\.

matches 3 periods at the end of the field

matches any diacritic (3 digits within braces)

matches "$"-"5"-number-number-decimal
point (dollar values between $500 and $599)

2

Playing With "Matches" Richard V. Jackson, Huntington Library
rjackson@hunti ngton .org Innovative Users Group Conference 2010 / Chicago

2. How Millennium Stores MARC Variable Fields:

Successful use· of regular expressions, particularly the position indicators (""'" and "$"), requires
understanding how Millennium stores MARC format data. Some examples will illustrate:

• A MARC variable field includes a tag number, indicators, subfield delimiters, subfield codes, and
data. The vertical bar ("I") is used as the subfield delimiter.

245 10 Nabi : lbpoema /lcpor Jos~ Carner.
.

3

l2l4 lsl1 lol I lalNlalblil · 1·: lflbli>lolelmlal Ill I lclplolrl l.ilolsl { 1212161} lei . lclalrlnlelrl -1 -..-- . ·. t _·. T T T . . f ·· End of field position($)
. . Diacritics comprise 5 characters, a 3-digit number encl_osed in curly braces

The first subfield delimiterand-subfi_eld_code.(includinq !a) occupy positions 6 and 7
. The 4th and 5th characters are the two md1cators . . ·

The-first 3 characters of the field are the MARC tag number
· Start of field position (")

•. • OOX control fields do not tise,subfield delimiters or codes, but do include 2 spaces for indicators.

·• When a particular-MARC tag -_ subfieldis specified in a search statement, the "field" :begins with the ·
delimiter for that subfield and ,ends just before the next delimiter, or at the end of the entire field.

Example: . :M.1\RG ~AG 7_00~ matches "'°' ld175"

. Start of field .position (A) End of field position ($)

. .
. .

• · The normalization rules thatmay· apply to call numbers affect indexing only, not the way the call
numbers appear to Create Lists. · · ·

• Non,-MARC fields are stored without MARC tags, indicators, ot subfield codes.

TITLE The ~ardens of Southern California. :

. JTlhJel lglalrldlelnlsl l.oM islolultlhlelrlnl lci~l1iijflolrlnlij,lq
("')· : ($) .

· · Playing With "Matches"
Innovative Users.Group Conf~rence 2010 I Chicago

. Richard v. Jackson, Huntington Library
· rjackson@huntingto'n.org ·

3. Examples of Regular Expressions in ~reate Lists

Exam.ole 1: Use of the "dot" meta character

Problem: You are asked to limit a search to titles published in the.United States. Unfortunately,
the fixed-length field COUNTRY uses separate codes for each of the 50 states, D.C., etc.

Solution:

COUNTRY matches " .. u·"

4

All U.S. codes have "u" a~ th_e third character. With this expr-ession, the first two characters can
be anything, but the third character must be "u". This matches everything from "alu" (Alabama) to
"wyu" (Wyoming). · ·

Example 2: Character classes

Problem: -"Find notes containing the phrase "gray [or grey] wolf[or wolves]."

Solution:

NOTE matches "gr[ae]y wol[fv]"

Note that a character class (without a quantifier) must match one and only one character.

Examole 3: Negated character classes

Problem: Look for missing (or invalid) subfield codes, such as the ones in these fields:

245 10 Love for love I [microform] : Iba comedy / I cby William Congreve.

650 0 United StateslxHist~rylCivil War, 1861-18-uSlvAnecdotes. ,. .

-Solution:

MARC TAG 245 matches "I ["abcfghknps6]"

MARC TAG 650 matches "I ["avx-z]" ·

. Negated character classes work well for finding invalid characters. The valid subfield codes for
the 245 tag are generally a, b, c, f, g, h, k, n, p, s and 6; for the 650 tag they are a, v, x, y, and .z.
These expressions match a subfield delimiter ("I") followed by a character that is not a valid code.

Example 4: Use of "dot-star"

· Problem: Look for non-repeatable subfield CQde~ that are repeated,· such as the~e:

245 10 Deception: Iba novel /fby Philip Roth.

24510 California :lea history /lcAndrew F. Rolle.

Solution:

MARC TAG 245 matches "lb.*lb"
OR MARC TAG 245 matches n I c. * I c"

The construction "dot-star" (. *) is often used as a placeholder for "any number of any characters"
between two more specific sub-expressions .

. Playing With "Matches"
Innovative Users Group Conference 2010 / Chicago

Richard V. Jackson, Huntington Library
. . ~a9<son@hunti~gton.org

Example 5: More with "dot-star"

Problem: Create a bibliography of anything relating to 18th century France.

Solution:

SUBJECT matches "france.*18th cent"
OR SUBJECT matches "france. *17 [0-9] [0-9]"

This search will match all these headings and more:

651 0 FrancelxHistorylyRevolution, 1789-17991xArt and the revolution
600 00 LouislbXIV, lcKing of France, ld1638-17151xArt collections
651 0 Francelxintellectual lifelyl8th century
650 0 Books and readinglzFrancelxHistoryly18th century
650 0 ArchitecturelzFrancelzParislyl8th century
651 0
650 0
650 0
650 0
650 0
651 0
651 0
651 0
600 10

FrancelxPolitics and governmently1789-1815
PrintinglzFrancelxHistoryly18th century
RepublicanismlzFrancelxHistoryly18th century
IndividualismlxSocial aspectslzFrancelxHistoryly18th century
EthnopsychologylzFrancelxHistoryly18th century
Paris (France) lxHistoryly1799-1815
Lyon (France) lxHistorylxSiege, 1793
Paris (France) lxSocial life and customsly18th century
Douglas, Frances, lcLady, ld1750-1817 [falsedrop]

Example 6: "Escaping" a metacharacter

Problem: The diacritics grave ("'")and acute("'"), stored as "{225}" and "{226}" respectively,
have occasionally been used incorrectly as single quotes or apostrophes in note fields:

500 Originally written for {225}The Youth's companion{226}.
500 Includes publisher{226}s advertisements on covers.

Solution:

NOTE matches "\{22[56]\}["aeiou]"
OR NOTE matches "\{22 [56] \}$"

To search for diacritics, the curly braces (which are normally metacharacters) must be preceded
by a backslash. This search matches a grave or acute that is followed by any character that is
not a vowel, or a grave or acute that is the last character in the field. This search may also find
other kinds of errors (e.g., Nez Perce{226}).

Example 7: The {min,max} quantifier

Problem: Find words that may be spelled differently, or phrases with optional words.

Solution:

ORDER NOTE matches "cancel{l,2}ed"

ORDER NOTE matches "acknowledge{0,l}ment"

TITLE matches "Thomas (Alva) {0,l}Edison"

5

Playing With "Matches"
Innovative Users Group Conference 201 O / Chicago

Richard V. Jackson, Huntington Library
rjackson@huntington.org

Example 8: Position indicators

Problem: Find subject headings with second indicators that are not O (Lib. of Congress), 5 (Natl.
Lib. of Canada), or 7. Also find those with 2nd indicator 7, where the last subfield is not 12.

Solution:

SUBJECT matches
OR SUBJECT matches

""6 .. . ["057]"
""6 .. . 7.*I ["21 ["11+$"

The first search statement matches a 6 at the start of the field, followed by any 3 characters (for
the rest of the tag number and the first indicator), followed by a character that is not 0, 5, or 7.
The second search statement matches a 6 at the beginning, a 7 as the second indicator, any
number of any characters, then a subfield delimiter with a subfield code other than 2, followed by
one or more characters that are not another subfield delimiter, followed by the end of the field.
The last part ensures that the subfield code that is not 12 is the last subfield in the field.

Example 9

Problem: Find system control numbers that are exactly 4 digits long in order to use Global
Update to insert 2 leading zeroes.

Solution:

MARC TAG .035
OR MARC TAG 035

matches
matches

"la[0-9]{4}$"
"I a [0-91 {4} ["0-9]"

6

This search matches la., followed by exactly 4 digits, followed by either the~nd of the field or a
character that is not a digit. Global Update c.an then be used to insert "00" at the start of the field.

Examole 10

Problem: Find records where the title proper (MARC tag -245 la) is longer than 256 characters.

Solution:

MARC TAG 2451a matches "la. {100}. {100}. {57}"

The maximum value for any quantifier is 127, so the expression". {257 }" won't work. Use
instead any combination of multiple quantified subexpressions to achieve the desired maximum.
This expression finds subfields that contain 257 characters; they may be longer than that.

Example 11

Problem: Some records have "empty" tags-fields with no data or perhaps with only a "la".

Solution:

Ml\RC TAG??? matches "".{1,7}$"

Note that you can search all MARC tags at once by specifying a MARC tag (using"!") and
entering 3 question marks (or 3 spaces) for the tag number. (You can also specify partial tag
number matches, for example, "5??", "76?", "?10", etc.) This expression must include both the
beginning and end of field indicators in order to match tags with 7 or fewer characters. The
minimum value cannot be 0, or all non-MARC fields will match.

This search may match some valid 007 tags, e.g., "007 ta". You can avoid including OOX tags by
searching: MARC TAG ??? matches "". ["0]. {0 ,5}$"

Playing With "Matches"
Innovative Users Group Conference 2010 / Chicago

Richard V. Jackson, Huntington Library
rjackson@huntington.org

7

Example 12: Using the fixed-length fields (newly revised)

Problem: Limit a search to titles published outside the United States. (This is the complement of
-Example 1.)

Solution:

COUNTRY matches "["u]$"
COUNTRY matches . .,,... .. ["u]" [Alternate version]

These match records where the last character of the fixed-length field COUNTRY is not "u".

This search could not be done in earlier releases (prior to Release 2005?), and it still will not work
in the character-based system. In earlier releases, a regular expression used with a fixed:.length
field could not contain more characters than the field itself (3 in the case of COUNTRY). It was
necessary to use 008 bytes· 1$-17 to do this search.

That restriction for the fixed-length fields no longer applies. Here is another example:

COUNTRY matches "["oq] .c"

This will match Country codes for any place in Canada outside of Ontario and Quebec.

This change means you can now use regular expressions even with single-character fixed-length
fields (even though the User Manual still implies otherwise). See Example 18 for an example.

Example 13

Problem: Some bad data, such as Line Feed characters (ASCII 10), have somehow gotten into
some records.

Solution:

MARC TAG??? matches "[" -~]"

This matches any character outside of the range <space> (ASCII 32) to "~" (tilde, ASCII 126).

Example 14

Problem: Some titles have incorrect filing indicators, such as:

245 04 Grand Tour: lbthe lure of Italy in the eighteenth century
245 04 A letter from a Gentleman of the City of New-York .to another

(The first title is indexed as "d tour the lure of italy ... ", the second as "tter from a gentleman ... ")

Solution:

MARC
OR MARC
OR MARC
[etc.]

TAG 245
TAG 245
TAG 245

matches
matches
matches

'' "2 4 5 . 2 I a . [" ' "l "
""245.31a .. [" '"]"
""245.4la.~.[" '"l"

These expressions depend on the fact that for a filing indicator n, the nth character following "la"
should normally be a space, apostrophe/single quote, or double quote. The above expressions
match when the nth character is not one of these characters. (This may not work if the initial
article contains a diacritic; diacritics count as one filing character, but are stored as 5 characters.)

Playing With "Matches"
Innovative Users Group Conference 2010 / Chicago

Richard V. Jackson, Huntington Library
rjackson@huntington.org

Example 15

Problem: Find subjects headings that have a second indicator 4, . including those in MARC tags

600,610, 611, 630, 650, and 651, but not including 655 or 690.

Solution:

Subject matches ""6[0135] [01] .4"

Use "A" to anchor the expression to the beginning of the field. In this expression, 655s are
excluded because the 3rd digit can only be O or 1. 690s are excluded because the 2nd digit

cannot be 9. The first indicator can be any character, but the second indicator must be 4.

Example 16

Problem: The height of books is usually given in centimeters in MARC 300 lc. However, some

records give both height and width (23 x 30 cm), some use millimeters, and some older records

use inches or designations such as "folio," "8vo," etc. For the purpose of simplifying a size
analysis of a collection, extract a list of records with "clean" size designations.

Solution:

300 matches
OR 300 matches

"lc[l-9] [0-9] cm[.] {0,1}$"
"lc[l-9][0-9] cm[. l{0,1}.{0,2}1"

This matches 2-digit centimeter statements, with or without a period, either at the end of the tag

. or followed after no more than 2 characters by another subfield delimiter.

Example 17

Problem: In MARC tag 856 (Electronic location and access), a clickable "linking" text may be

generated in the OPAC from lz (Public note) or 13 (Materials specified). Find records with 856s

that contain neither 13 nor lz.

Solution:

MARC TAG 856 matches ""856 .. (I ["3z] ["I]*)+$"

Use both the start and end of field position indicators, and account for the tag number and

indicators at the beginning. The parentheses group together the characters of a single subfield,

here specified as a subfield delimiter (''I"), followed by a subfield code that is not "3" or "z",

followed by any number of characters that are not "I"- The"+" indicates one or more such
subfields occurring until the end of the field is reached.

It might seem· simpler to use:

MARC TAG 856 at least one field does not have "lz"
AND MARC TAG 856 at least one field does not have "13"

However, a single record may have multiple 856s. The above search may find records where

one 856 lacks "lz" and another lacks "13." Only the regular expression guarantees finding

instances of a single field that lack both subfields.

8

Playing With "Matches"
Innovative Users Group Conference 2010 / Chicago

Richard V. Jackson, Huntington Library
rjackson@huntington.org

9

Example 18

Problem: Find records that contain a bad code in the fixed-length field MAT TYPE (aka Bcode2).

Solution:

MAT TYPE matches "["ac-gijkmoprt]"

Earlier restrictions on the use of regular expressions with fixed-length fields no longer apply (see
Example 12), and it is now possible to use them even with single-character codes. This can
greatly simplify finding invalid codes. The above search finds characters that are not one of the
valid codes as defined in MARC21; any locally-defined codes should also be accounted for.

Example 19

Problem: Find books where the number of pages given in 300 la is 25 or fewer.

Solution:

3001a matches
OR 3001a matches
OR 3001a matches

"["0-9] [l-9] p\."
"["0-9]1[0-9] p\."
"["0-9]2[0-5] p\."

Separate search statements are needed to find books with 1-9, 10-19, and 20-25 pages.
Including "[A0-9]" at the beginning of.each expression ensures that values such as "6~" are
not matched, while still permitting matches on values such as "vi, 23 p." Unfortunately, this
search will also match, for example, "123 p., ~ of plates", and will fail to match "[8] p."

Example 20

Problem: Find bib records that have two (or more) call number fields. The only characteristic that
reliably distinguishes the call numbers is that one is always longer than the other.

Solution:

(CALL # matches "la. {6}$"
AND CALL # matches " I a. { 7} '')

OR (CALL # matches "la. {7}$"
AND CALL # matches "la.{8}")

OR (CALL # matches "la.{8}$"
AND CALL # matches "la.{9}"
OR [etc.]

This search assumes that the shortest possible call number contains 6 characters following "la".
The first pair of search statements matches records where one call number has exactly 6
characters and another call number in the same record contains at least 7 characters. (Note the
presence or absence of the end of field indicator($).) The second pair of search statements
increments these lengths by one, finding one call number with exactly 7 characters and another
with 8 or more. You will need to add enough pairs of statements to reach the maximum likely
length for the call number. The parentheses shown grouping each pair of statements above are
not actually necessary (Create Lists always evaluates Boolean AND before OR), but are included
here for the sake of clarity.

Playing With "Matches" Richard V. Jackson, Huntington Library
Innovative Users Group Conference 2010 / Chicago · rjackson@huntington.org

10

4. Metacharacters That Do Not Work in Create Lists

Several metacharacters and metasequences that are available in other implementations of
regular expressions do not work in Create Lists. Some of these are listed here, along with some
possible wo~karounds.

? Used to indicate that the preceding character (or group of characters) is optional.
In Create Lists, the question mark is a literal character.

Workaround: Use the quantifier" { o, 1}
11 to indicate that a character (or group of

characters) occurs O or 1 times.

<·.·I···> Used to indicate two or more alternative strings of characters, for example
11 (donation I gift)". In Create Lists, 11 I" is a literal (the subfield delimiter).

Workaround: There is no workaround within a single regular expression;
however, you may be able to accomplish the same thing with multiple search
statements linked with Boolean OR.

<···> ... \1 Back references. Allows a string of text to be "captured" so the same text may
·be matched on again later in the "Same expression ·(or may be inserted in the
replacement text). Back references are not available in Create Lists.

There is no workaround. However, back references are primarily useful in
match-and-replace operations, and would have limited use in Create Lists.

\w, \d, Special character classes, positions, etc., such as "\w" (any alphanumeric word

\b, \s, character) or "\b" (a word boundary). None of these work in Create Lists. The
backslash is used only to change a metacharacter into a literal character.

\<, \>, (Backslashing a literal character simply results in the same literal character.)

etc.
Workaround: Most of these character classes are easily rendered using other
metacharacters. For example, "\d" (any digit) can be r-endered as" [0-9] ".

Using word boundary positions is problematic in MARC format anyway, because
of the use of letters for subfield codes.

5. Further information

The User Manual (page# 100672 for Millennium; #101608 for lnnopac) gives only a little
information on the "matches" condition in Create Lists. There is a wealth of information on the
Web and elsewhere on regular expressions; however, much of it is confusing,· misleading, or not
applicable to Create Lists. Most of what I have learned has been through a combination of
readi_ng and experimentation. I also found the following book to be very useful:

Friedl, Jeffrey E. ,F. Mastering Regular Expressions, 3rd edition.
Sebastopol, CA: O'Reilly, 2006. ·. 515 pp.

Playing With "Matches"
Innovative Users Group Conference 2010 / Chicago

Richard V. Jackson, Huntington Library
rjackson@huntington.org

